Quantitative dynamics of the link between cellular metabolism and histone acetylation.
نویسندگان
چکیده
Acetylation on the tails of histones plays an important role in controlling transcription initiation. Although the steady-state abundances of histone acetyl groups have been reported, the rate at which histones are acetylated and deacetylated on a residue-specific basis has not been quantitatively established. We added [(13)C]glucose to human cells and monitored the dynamic incorporation of (13)C-labeled acetyl groups onto specific histone lysines with quantitative mass spectrometry. We determined the turnover of acetylation to be generally slower than phosphorylation, but fast relative to methylation, and that the rate varied depending on the histone, the residue modified, and also the neighboring modifications. Cells were also treated with a deacetylase inhibitor to determine the rate due to histone acetyltransferase activity alone and in the absence of deacetylase activity. Introduction of (13)C-labeled glucose also resulted in the incorporation of (13)C into alanine, which allowed us to partition histones into existing and newly synthesized protein categories. Newly synthesized histones were slower to accumulate histone modifications, especially modifications associated with silent chromatin. Finally, we applied our new approaches to find that quiescent fibroblasts exhibited lower levels of labeled acetyl accumulation compared with proliferating fibroblasts. This suggests that acetylation rates can be modulated in cells in different biological states and that these changes can be detected with the approach presented here. The methods we describe can be broadly applied to defining the turnover of histone acetylation in other cell states such as during cellular reprogramming and to quantify non-histone protein acetylation dynamics.
منابع مشابه
P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation
Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...
متن کاملQuantitative Profiling of Lysine Acetylation Reveals Dynamic Crosstalk between Receptor Tyrosine Kinases and Lysine Acetylation
Lysine acetylation has been primarily investigated in the context of transcriptional regulation, but a role for acetylation in mediating other cellular responses has emerged. Multiple studies have described global lysine acetylation profiles for particular biological states, but none to date have investigated the temporal dynamics regulating cellular response to perturbation. Reasoning that lys...
متن کاملThe effect of aspirin on the interaction of histone 05 and 05-DNA
The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...
متن کاملATP-citrate lyase links cellular metabolism to histone acetylation.
Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (AC...
متن کاملHDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 288 17 شماره
صفحات -
تاریخ انتشار 2013